风云三号(03 批)气象卫星地面应用系统工程 E 星风场测量雷达

海面风矢量产品使用说明

(V1.2.0)

编与:	<u>荚芳刚</u>	<u> </u>	
校对:			
审核:			
会签:			
批准:			

国家卫星气象中心 2023 年 3 月

文档修订记录

版本号	日期	修订内容	修订人	注 记
V1.0.0	2022-02-24	新建	韩爽爽	
V1.0.1	2022-03-01	修订算法描述内容	窦芳丽	
V1.1.0	2022-05-21	修订质检结果	窦芳丽	
V1.2.0	2023-03-17	修订,算法更新, 增加Ku和双频	窦芳丽	

目 录

1	产品定	义	.1
2	产品规	格和格式	.1
	2.1	产品规格	1
	2.2	产品文件	1
	2.3	产品科学数据集	2
	2.4	私有文件属性参数	3
3	产品算	法原理和处理流程	.6
	3.1	算法基本原理	6
	3.2	处理流程	8
4	产品处	理流程	.9
	4.1	输入文件	9
	4.2	输出文件	9
	4.3	处理流程	9
5	产品示	例	10
	5.1	轨道海面风矢量产品示例	10
	5.2	日海面风矢量产品示例	12
	5.3	旬海面风矢量产品示例	13
	5.4	月海面风矢量产品示例	15
6	产品精	度	16
	6.1	产品检验评估方法和数据	16
	6.2	产品检验评估结果	17
7	产品使	用说明	17
	7.1	产品读取使用说明	17
	7.1.	1 轨道海面风矢量产品的读取	18

	8.1	产品	品技术责任人	23
8	产品	品技术支	持	.23
	7.4	主要	更参考文献	21
	7.3	应月	月限制条件	21
	7.2	产品	品使用说明	21
		7.1.5	产品质量码的读取	20
		7.1.4	月海面风矢量产品的读取	19
		7.1.3	旬海面风矢量产品的读取	19
		7.1.2	日海面风矢量产品的读取	18

1 产品定义

卫星散射计观测与海表面粗糙度直接相关,因此风场测量雷达的海面风场产品代表着 10 米高度的压力等效风(Stress-Equivalent wind,SE wind),压力等效风传递了海面粗糙度测量到 10 米高度处去除了大气层结效应的风场。对数值预报(NWP)模式风而言,从真实 10 米风到 SE 风可以通过海表面物理模型进行到中性稳定层结风的转换,再通过加乘一个校正参数完成到 SE 风的转换。

本产品包含的反演物理要素是单频反演和双频反演的海面 10 米高度压力等效风速和风向,还包含物理要素的质量标识以及物理要素的地理定位信息等。

2 产品规格和格式

2.1 产品规格

投 更新 影 频次 产品名称 覆盖范围 产品名称 空间分辨率 方 大 WindRAD 海面 FY3E WRAD- ORBA L2 OVW 14/ 风矢量轨道产 无 全球 20KM MLT NUL YYYYMMDD HHM 天 品(升轨) M 010KM V0.HDF WindRAD 海面 FY3E WRAD- ORBD L2 OVW 14/ 风矢量轨道产 无 全球 20KM MLT NUL YYYYMMDD HHM 天 品(降轨) M 010KM V0.HDF WindRAD 海面 FY3E WRAD- SG## L2 OVW 风矢量中国区 13/ 无 中国 20KM MLT NUL YYYYMMDD HHM 高时效轨道产 天 M 010KM V0.HDF

表 2-1 WindRAD 海面风矢量产品规格列表

2.2 产品文件

表 2-2 WindRAD 海面风矢量产品数据文件列表

序号	文件名称	格式	周期	产品描述	关键词
1	FY3E_WRADORBA_ L2 OVW MLT NUL	HDF	轨道	全球海面十米的水平等效压力风矢量,由雷达	OVW

序号	文件名称	格式	周期	产品描述	关键词
	YYYYMMDD_HHMM			后向散射数据反演得	
	_010KM_V0.HDF			到。产品设计精度:风	
				速 均 方 根 误 差 小 于 2m/s,风向均方根误差	
				小于 25°。	
2	FY3E_WRADORBD_				
	L2_OVW_MLT_NUL_	HDF	轨道	同上	OVW
	YYYYMMDD_HHMM	прг	机坦	IH]	Ovw
	_010KM_V0.HDF				
3	FY3E_WRADSG##_L				
	2_OVW_MLT_NUL_Y	HDF	轨道	同上	OVW
	YYYMMDD_HHMM_0	ППП	171.70		
	10KM_V0.HDF				

2.3 产品科学数据集

表 2-3 WindRAD 海面风矢量产品科学数据集

	秋 2 - 3 WITHIND /4回/八里/ 旧行于双加未							
	和							
分组	科学数据集		科学数据集名(英文)	科学数据集中文描述				
名称								
	SDS1	mle	mle	C波段最大似然值				
	SDS2	wvc_lat	wvc_lat	C波段风矢量单元纬度				
	SDS3	wvc_lon	wvc_lon	C波段风矢量单元经度				
	SDS4	model_dir	model_dir	模式背景风向				
	SDS5	model_speed	model_speed	模式背景风速				
	SDS6	wind_dir_selected	wind_dir_selected	C波段反演风向				
	SDS7	wind_speed_selected	wind_speed_selected	C波段反演风速				
	SDS8	wvc_quality_flag	wvc_quality_flag	C波段风矢量单元质量				
C_ba				标识码				
nd	SDS9	day_count	Day Count of Observation	每行第一个风矢量单元				
			Time since 12:00:00 on Jan	的观测时间天计数,自世				
			1, 2000 in UTC of the first	界时 2000 年 1 月 1 日中				
			WVC in each line	午 12:00 开始计数				
	SDS10		Millisecond Count of Observation Time from	每行第一个风矢量单元 的观测时间的天内毫秒				
		millisecond_count	12:00 am of Each Day in UTC of the first WVC in	计数,自世界时每天的中				
			each line	午 12:00 开始计数				
Ku b	SDS1	mle	mle	Ku波段最大似然值				
and	SDS2	wvc_lat	wvc_lat	Ku波段风矢量单元纬度				
and	SDS3	wvc_lon	wvc_lon	Ku 波段风矢量单元经度				

	SDS4	model_dir	model_dir	模式背景风向
	SDS5	model_speed	model_speed	模式背景风速
	SDS6	wind_dir_selected	wind_dir_selected	Ku波段反演风向
	SDS7	wind_speed_selected	wind_speed_selected	Ku波段反演风速
	SDS8	wvc_quality_flag	wvc_quality_flag	Ku波段风矢量单元质量
				标识码
	SDS9		Day Count of Observation	每行第一个风矢量单元
		day count	Time since 12:00:00 on Jan	的观测时间天计数,自世
		day_count	1, 2000 in UTC of the first	界时 2000 年 1 月 1 日中
			WVC in each line	午 12:00 开始计数
	SDS10		Millisecond Count of	 每行第一个风矢量单元
			Observation Time from	的观测时间的天内毫秒
		millisecond_count	12:00 am of Each Day in	计数,自世界时每天的中
			UTC of the first WVC in	午 12:00 开始计数
			each line	
	SDS1	mle	mle	双波段最大似然值
	SDS2	wvc_lat	wvc_lat	双波段风矢量单元纬度
	SDS3	wvc_lon	wvc_lon	双波段风矢量单元经度
	SDS4	model_dir	model_dir	模式背景风向
	SDS5	model_speed	model_speed	模式背景风速
	SDS6	wind_dir_selected	wind_dir_selected	双波段反演风向
	SDS7	wind_speed_selected	wind_speed_selected	双波段反演风速
	SDS8	wvc_quality_flag	wvc_quality_flag	双波段风矢量单元质量
Dual_				标识码
band	SDS9		Day Count of Observation	每行第一个风矢量单元
		day count	Time since 12:00:00 on Jan	的观测时间天计数,自世
		day_count	1, 2000 in UTC of the first	界时 2000 年 1 月 1 日中
			WVC in each line	午 12:00 开始计数
	SDS10		Millisecond Count of	 每行第一个风矢量单元
			Observation Time from	的观测时间的天内毫秒
		millisecond_count	12:00 am of Each Day in	计数,自世界时每天的中
			UTC of the first WVC in	午 12:00 开始计数
			each line	, 12:00 / 1 /H /1 3/A

2.4 私有文件属性参数

表 2-4 WindRAD 海面风矢量产品私有属性参数

描述	属性名称	数据类型	数量	值含义
卫星名称	Satellite Name	string	5	FY-3E

数据集名称	Dataset Name	string	不定长	Ocean Surface Wind Vector Product
		string		FY3E_WRADORBX_L2_
				OVW MLT NUL YYYYM
				MDD_HHMM_010KM_Vn.
				HDF
文件名称	File Name		不定长	或
				FY3E_WRADSG##_L2_O
				VW_MLT_NUL_YYYYMM
				DD_HHMM_010KM_V0.H
				DF
仪器名称	Sensor Name	string	不定长	WindRAD
数据集区域	Dataset Area	string	不定长	ORBX
数据级别	Data Level	string	2	L2
处理软件版本号	Version Of Software	string	不定长	V1.0.0
处理软件更新日期	Software Revision Date	string	不定长	YYYY-MM-DD
数据观测开始日期	Observing Beginning	string	エカル	
(包括年月日)	Date		不定长	YYYY-MM-DD
数据观测开始时间	Observing Beginning	string	エ カリ	
(包括时分秒毫秒)	Time		不定长	hh:mm:ss.sss
数据观测结束日期	Observing Ending Date	string	ナ ウV	
(包括年月日)	Observing Ending Date		不定长	YYYY-MM-DD
数据观测结束时间	Observing Ending Time	string	エ ウV	
(包括时分秒毫秒)	Observing Ending Time		不定长	hh:mm:ss.sss
数据创建日期(包括	Data Creating Date	string	て ウ V	
年月日)	Data Creating Date		不定长	YYYY-MM-DD
数据创建时间(包括	Data Creating Time	string	エ ウV	
时分秒毫秒)	Data Creating Time		不定长	hh:mm:ss.sss
按照时、日、侯、	Time Of Data Composed	string	エ ウV	
旬、月合成的标志	Time Of Data Composed		不定长	Orbit
数据层数(表示数据				
有几个通道或几块	Number Of Data Level	16-bit unsigned Integer	1	1
等)				
投影类型	Projection Type	string	不定长	ORBT
左上角 X 坐标	Left-Top X	32-bit floating point	1	经度或大地坐标 X 值
左上角 Y 坐标	Left-Top Y	32-bit floating point	1	纬度或大地坐标 Y 值
右上角 X 坐标	Right-Top X	32-bit floating point	1	经度或大地坐标 X 值

右上角 Y 坐标	Right-Top Y	32-bit floating point	1	纬度或大地坐标 Y 值
左下角 X 坐标	Left-Bottom X	32-bit floating point	1	经度或大地坐标 X 值
左下角 Y 坐标	Left-Bottom Y	32-bit floating point	1	纬度或大地坐标 Y 值
右下角 X 坐标	Right-Bottom X	32-bit floating point	1	经度或大地坐标 X 值
右下角 Y 坐标	Right-Bottom Y	32-bit floating point	1	纬度或大地坐标 Y 值
坐标单位	Coordinate Unit	string	不定长	Degree
投影中心纬度	Projection Center Latitude	32-bit floating point	1	N/A
投影中心经度	Projection Center Longitude	32-bit floating point	1	N/A
标准投影纬度1	Standard Projection Latitude1	32-bit floating point	1	N/A
标准投影纬度 2	Standard Projection Latitude2	32-bit floating point	1	N/A
标准投影经度	Standard Projection Longitude	32-bit floating point	1	N/A
分辨率单位	Unit Of Resolution	string	不定长	Km
X 方向分辨率	Resolution X	32-bit floating point	1	1
Y方向分辨率	Resolution Y	32-bit floating point	1	1
数据行数	Data Lines	32-bit unsigned Integer	1	
数据列数	Data Pixels	32-bit unsigned Integer	1	1
投影附加说明	Projection Annotation	string	不定长	
L1 数据质量标记	L1 Data Quality	string	不定长	
数据质量标记	Data Quality	string	1	
数据质量标记说明	Data Quality Annotation	string	不定长	质量标记释义 Data Quality 0 mean: ALL band valid,;Data Quality 1 mean: C band invalid;Data Quality 2 mean: Ku band invalid; Data Quality 3 mean: C band and Ku band both invalid
产品责任人	Product Creator	string	不定长	Dou Fangli
程序编制者	Programmer	string	不定长	Han Shuangshuang
文件的附加说明	Additional Annotation	string	不定长	The wind directions are in oceanographic convention; The global attribute is based on Ku-band, L1 data and the scientific data sets are divided

				into three groups: Ku-band,
				C-band and Dual-band.
白天黑夜标识符	Day Or Night Flag	string	不定长	
轨道号	Orbit Number	32-bit unsigned Integer	1	
轨道周期(分钟)	Orbit Period(min.)	16-bit unsigned Integer	1	
4. 学子卢	Orbit Direction	string	1	A:Ascend D:Descend
轨道方向 	Orbit Direction	string	1	M:Mixed
白天模式扫描线数	Number Of Day mode	32-bit signed Integer	1	见注2
	scans			
晚上模式扫描线数	Number of Night mode scans	32-bit signed Integer	1	见注3
地球椭球参考坐标	Reference Ellipsoid		2-17	WGS84
系 ID(WGS84)	Model ID	string	定长	WG584
日地距离比	EarthSun Distance Ratio	64-bit floating point	1	
扫描行数	Number Of Scans	16-bit unsigned Integer	1	
有效数量	Data Integrity	string	1	见注1

注:

- 1、数据完整性计算
- 0=存在有效数据,1=无有效数据
- 2、白天模式扫描线数:星下点太阳天顶角小于90度的扫描线数
- 3、夜晚模式扫描线数:星下点太阳天顶角大于90度的扫描线数

产品算法原理和处理流程

3.1 算法基本原理

1) 最大似然估计反演

风场反演主要是依靠数值统计算法实现,这里使用的是最大似然估计算法, 目标是标识着观测值出现概率的目标函数达到最大值。C 波段 GMF 使用 CMOD7, Ku 波段 GMF 使用 NSCAT-6, GMF 的输入是风速、风向、观测方位角和入射角,输 出是雷达观测的归一化后向散射截面 sigma0, 在反演中, 风速风向是未知量, 观测和 GMF 被用于构建目标函数,即最大似然,目标函数的表达式如下所示:

$$MLE = \frac{1}{SD^2} \sum_{i=1}^{N} (z_{oi} - z_{mi})^2$$

其中z_{oi}是测量的后向散射观测,z_{oi}是模拟的后向散射值,SD 为测量噪声的标准差风向的敏感性,MLE 值能够代表风矢量解代表真实风的概率,MLE 较大值对应着较低的概率,反演流程中的关键步骤是要寻找 MLE 的最小值,一般能够寻找到2到4个局地极小值,对应2到4个模糊解。风场域搜寻的策略分为两步,首先以固定步长固定风向,扫描风速来找代价函数最小值,在风速搜寻中只有一个最小值会发生,扫描过程中可以根据需要减小步长,以找到的最小值为起点重复搜寻过程,如果步长到达一个特定的小值,程序停止,然后风速存在最小代价函数集里,每个风向都有一个谷值,所有风向组成的曲线,进一步搜寻来找到局地最小值。

MSS 方法反演中保留了更多的模糊解个数,能够有效避免由于 MLE 代价函数 极小值较宽而导致风场反演错误的情况,为模糊解去除过程提供更多的参考解。根据贝叶斯理论,散射计反演风的解的概率可以定义为与 MLE 有关的函数:

$$P(\nu|\sigma_0) = e^{-MLE/1.4}$$

采用 MSS 方法,无需再进行反演过程中的二维局地最小化的搜寻,而是直接保留扫描风向过程中找到的风速一维局地最小化的解。

2) 模糊解去除

由于散射计风存在多解,因此需要通过先验约束进行模糊解去除。KNMI 利用 ERS 数据对不同模糊解去除方案进行了评估,发现二维变分(2DVAR)方法能够获得最准确、稳定的模糊解去除结果,2DVAR 利用短期数值预报对散射计观测时间和位置的风预报结果,从散射计的模糊解中提取出最终解。为了代表散射计处理过程中反演最小值的变化,相对于传统只获得 2-4 个模糊解,使用多解(MSS)方案,将风向范围以 2.5° 为间隔分为 144 个区间,获取风向范围的概率密度函数概率值,144 个模糊解被用于 2DVAR 中,选择最优解。代价函数定义如下:

$$J(\mathbf{v}^{k}, \mathbf{x}) = J_{0}(\mathbf{v}^{k}, \mathbf{x}) + J_{b}(\mathbf{x})$$

$$J_{0} = \sum_{i,j=1}^{N_{1}, N_{2}} \left(\sum_{k=1}^{M_{i,j}} \left\{ \frac{\left[t_{ij} - t_{ijk}^{0}\right]^{2}}{\sigma_{t}^{2}} + \frac{\left[t_{ij} - t_{ijk}^{0}\right]^{2}}{\sigma_{t}^{2}} - 2lnp_{k} \right\}^{-\lambda} \right)^{-1/\lambda}$$

$$J_{b}(\delta \mathbf{x}) = \delta \mathbf{x}^{T} B_{t,l}^{-1}(\delta \mathbf{x})$$

模糊解去除的步骤如下:

第一步, 获取背景场数据并做预处理

第二步,通过最小化代价函数从背景场和观测中得到分析风场

第三步,从144个模糊解中选取最接近分析风场的解作为终解

3.2 处理流程

风场产品处理算法整体流程包含读取业务系统L1级数据,对雷达后向散射系 数进行海洋定标,将观测数据与数值预报背景场进行匹配,最大似然估计反演风 场,质量控制和模糊解去除等关键步骤。使用ECMWF高分辨率大气模式确定性预 报产品(HRES)的全球地面层预报场的表面作为背景场数据,ECMWF信息中心获 取,分辨率为0.125°*0.125°,区域为全球(0°E-359.875°E,90°N-90° S), 获取要素包括10米东西风(10U), 10米南北风(10V), 2米温度(2T)、2米 露点温度(2D)、海面温度(SST)、地面气压(SP)。

风场产品处理算法整体流程见图3-1。

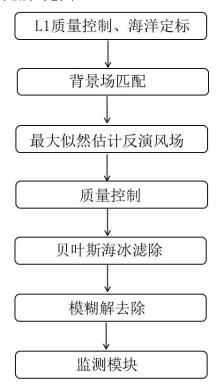


图 3-1 风场产品处理算法整体流程图

4 产品处理流程

4.1 输入文件

表 4-1 海面风矢量产品输入文件列表

序号	名称	文件格式	周期	数据来源	描述
1	WRADC L1 数 据	HDF	轨道	DPPS	定标定位后的 L1 数据
2	WRADK L1 数 据	HDF	轨道	DPPS	定标定位后的 L1 数据
3	EC 数据	二进制	3h	信息中心	通过原始数据进行数据解 析后的二进制文件
4	地球物理模型函 数	二进制	静态	PGS 内部	静态参数
5	海陆掩膜数据	二进制	静态	PGS 内部	静态数据

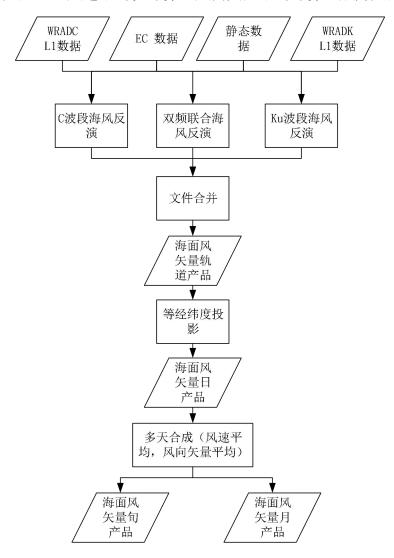
4.2 输出文件

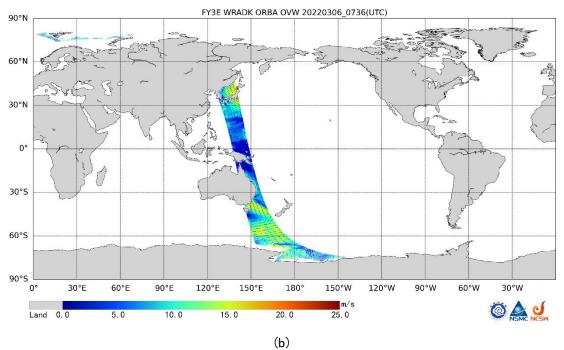
表 4-2 海面风矢量产品输出文件列表

序号	产品名称	产品格式	周期	产品去向	产品描述
1	WindRAD海面风 矢量轨道产品	HDF	轨道	存档系统	数据集包括 C、Ku 和双频 三个组,分为升降轨两类 文件存储,包含反演和 EC 的风速、风向,时间信息、 经纬度信息等
2	WindRAD海面风 矢量日产品	HDF	目	存档系统	数据集包括 C、Ku 和双频 三个组,分为升降轨两类 文件存储
3	WindRAD海面风 矢量旬产品	HDF	旬	存档系统	数据集包括 C、Ku 和双频 三个组
4	WindRAD海面风 矢量月产品	HDF	月	存档系统	数据集包括 C、Ku 和双频 三个组

4.3 处理流程

FY3E WindRad海风产品以L1、EC数值预报数据以及地球物理模式等静态参数 作为输入数据,其中C波段产品反演输入WRADC的L1数据,Ku波段产品反演输入 WRADK的L1数据,双频联合产品反演输入WRADC和WRADK两种L1数据,生成的三种产品进行文件合并,生成海面风矢量轨道产品。一天的轨道产品进行等经纬度投影合成日产品,10天日产品通过风速平均值计算、风向矢量平均计算生成旬产品,一个月的日产品通过风速平均值计算、风向矢量平均计算生成月产品。




图 4-1 海面风矢量产品处理流程图

5 产品示例

5.1 轨道海面风矢量产品示例

图 5-1 为海面风矢量轨道产品,以 20220306_0736 升轨数据为例。

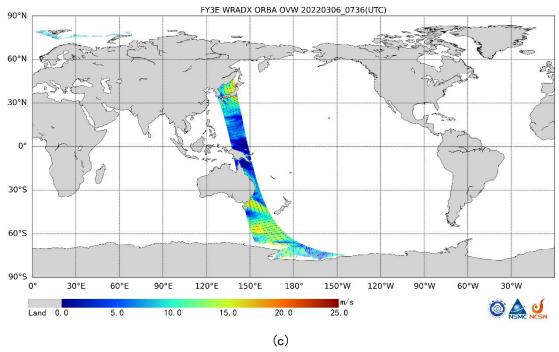
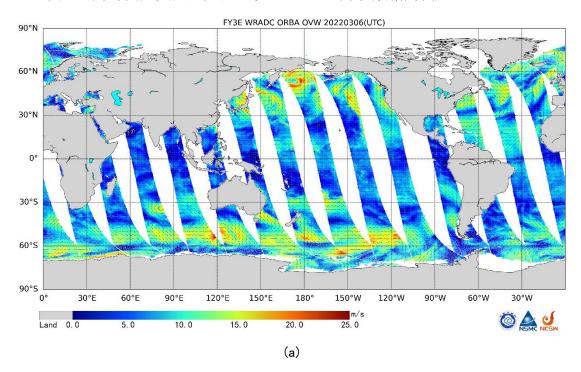



图 5-1 海面风矢量轨道产品图(a:C波段, b:Ku波段, c:双频联合)

5.2 日海面风矢量产品示例

图 5-2 为海面风矢量日产品,以 20220306 升轨数据为例。

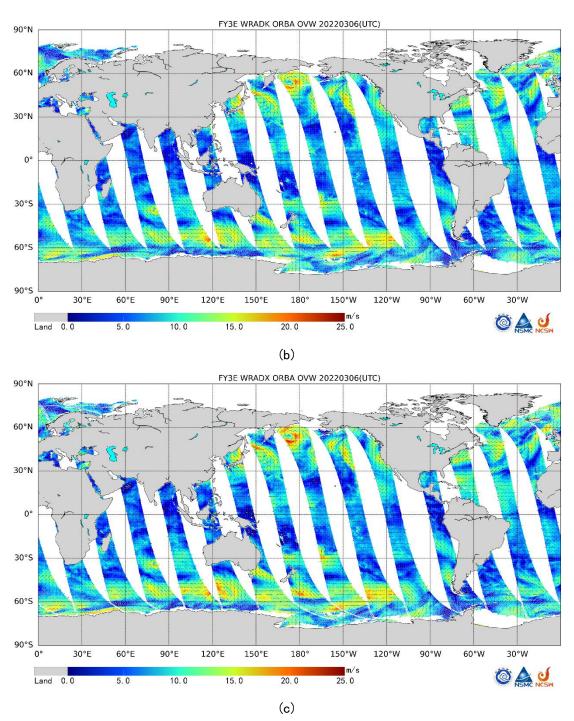
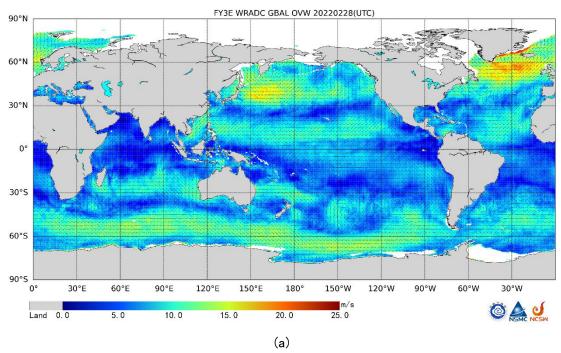
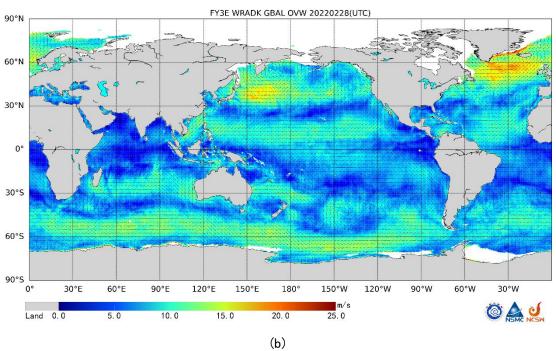




图 5-2 海面风矢量日产品图(a:C波段, b:Ku波段, c:双频联合)

5.3 旬海面风矢量产品示例

图 5-3 为海面风矢量旬产品,以 20220228 数据为例。

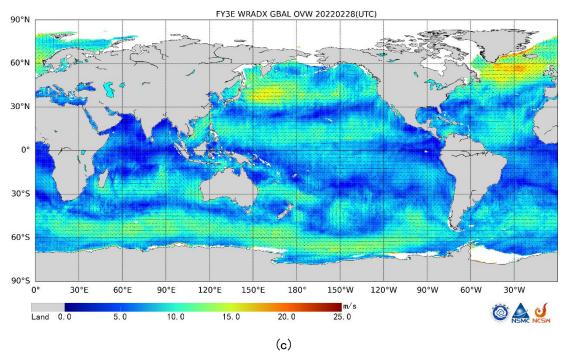
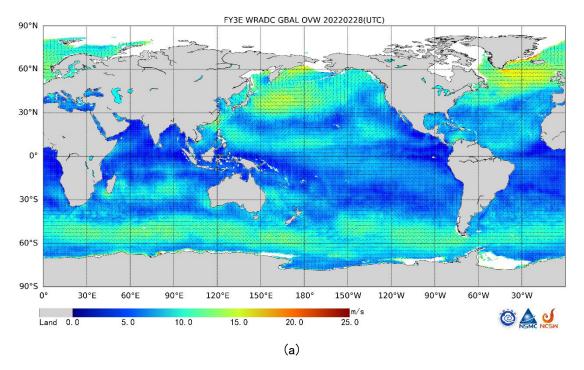
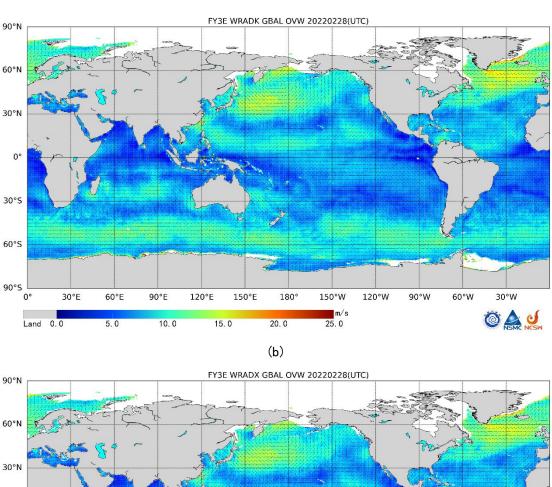




图 5-3 海面风矢量旬产品图(a:C波段, b:Ku波段, c:双频联合)

5.4 月海面风矢量产品示例

图 5-4 为海面风矢量月产品,以 202202 数据为例。

0° 30°5 60°S 60°E 90°E 120°E 180° 150°W 120°W 90°W 60°W 150°E SMC NCSW m/s 25.0 Land 0.0 10.0 20.0 (c)

图 5-4 海面风矢量月产品图(a:C波段, b:Ku波段, c:双频联合)

6 产品精度

6.1 产品检验评估方法和数据

基于数值预报资料的算法验证

选取 2023 年 2 月 23 日-2023 年 3 月 8 日 FY-3E WindRad 的业务海面风速产

品数据与数值预报资料进行匹配。

用于检验源的数值预报数据分为两类: ECMWF 高分辨率大气模式确定性预 报产品(HRES)和 ERA-5 再分析数据。

该检验结果来源于国家卫星气象中心风云三号质量检验系统(QCS)。

6.2 产品检验评估结果

表 6-1 海面风矢量产品精度和指标要求

	C 波段	Ku 波段	双波段			
与 ERA-5 比较						
风速精度	-0.007±1.52m/s	0.199±1.41m/s	0.28±1.43m/s			
风向精度	0.814±17.4°	0.986±17.7°	0.713±17.6°			
与 ECMWF-HRES 比较						
风速精度	-0.24±1.50m/s	0.05±1.32m/s	0.06±1.35m/s			
风向精度	1.78±17.22°	-0.27±14.33°	0.94±15.79°			
指标: 均方根误差小于 2m/s, 均方根误差小于 25° (3-20m/s)						

表 6-1 给出了目前发布产品与数值预报数据的精度检验验证情况,产品精度 满足设计指标。

产品详细验证方法及检验结果参见《风云三号 E 星 WindRad 海风产品检验文 档》。

7 产品使用说明

7.1 产品读取使用说明

产品文件为HDF格式,可通过如下python程序读取WindRAD的OVW产品, 根据实际文件全路径,修改 h5file 文件名,根据所要读取的数据集,修改数据 集名称。

7.1.1 轨道海面风矢量产品的读取

```
import h5py
import numpy as np

# h5file is OVW file name
# eg.
h5file='/FY3E_WRAD-_ORBA_L2_OVW_MLT_NUL_20220306_0736_010KM_V
0.HDF'

#
f = h5py.File(h5file, 'r')
dataset1 = f['/C_band/wind_speed_mle']
data_speed = np.array(dataset1)
dataset2 = f['/C_band/wind_dir_mle']
data_dir = np.array(dataset2)
f.close()
```

7.1.2 日海面风矢量产品的读取

```
import h5py
import numpy as np

# h5file is OVW file name
# eg.
h5file='/FY3E_WRAD-_ORBA_L2_OVW_MLT_GLL_20220306_POAD_025KM_
V0.HDF'

#
f = h5py.File(h5file, 'r')
dataset1 = f['/C_band/wind_speed_selected']
data_speed = np.array(dataset1)
dataset2 = f['/C_band/ wind_dir_selected']
```

```
data dir = np.array(dataset2)
f.close()
```

旬海面风矢量产品的读取 7.1.3

```
import h5py
    import numpy as np
    # h5file is OVW file name
    # eg.
h5file='/FY3E WRAD- GBAL L3 OVW MLT GLL 20220228 POTD 025KM
V0.HDF'
    #
    f = h5py.File(h5file, 'r')
    dataset1 = f['/C band/wind speed selected']
    data speed = np.array(dataset1)
    dataset2 = f['/C band/ wind dir selected']
    data dir = np.array(dataset2)
f.close()
```

月海面风矢量产品的读取 7.1.4

```
import h5py
    import numpy as np
    # h5file is OVW file name
    # eg.
h5file='FY3E_WRAD-_GBAL_L3_OVW_MLT_GLL_20220228_POAM_025KM_
V0.HDF'
    #
    f = h5py.File(h5file, 'r')
责任人: 窦芳丽
```

```
dataset1 = f['/C band/wind speed selected']
    data speed = np.array(dataset1)
    dataset2 = f['/C band/ wind dir selected']
    data dir = np.array(dataset2)
f.close()
        产品质量码的读取
```

7.1.5

```
质量码说明:
```

"The L2 quality flag for each wvc"

Note:

Quality flag is designed for the 17-bit(Bit0-16) binary code, and each 0 or 1 indicates good or bad quality.

Bit7:distance to gmf too large Bit8:no meteorological background used Bit9:rain detected Bit10:rain_flag_not_usable

Bit11:small wind less than or equal to 3 m s

Bit12:large wind greater than 30 m s

Bit13:wind inversion not successful

Bit14:some portion of wvc is over ice

Bit15:some portion of wvc is over land

Bit16:not enough good sigma0 for wind retrieval";

质量码读取:

import h5py

import numpy as np

h5file is OVW file name

eg.

h5file='/FY3E WRAD- ORBD L2 OVW MLT NUL 20220428 0640 010KM V

```
0.HDF'
```

```
#
```

```
with h5py.File(filename,'r') as fn:
    data=fn['/C_band/wvc_quality_flag'][:]

f = h5py.File(filename, 'r')
data = f['/C_band/wvc_quality_flag']
data_flag = np.array(data)

QAflag=(data_flag>>13) & 0b0000000000000001 #提取 bit13 的数据
print(data_flag)
print(QAflag)
```

7.2 产品使用说明

上述程序可在 linux 和 window 下运行,产品文件为 HDF 格式,根据实际文件全路径,修改 h5file 文件名,根据所要读取的数据集,修改数据集名称。

根据质量检验结果,产品在星下点和轨道边缘位置存在反演精度较低的问题,建议用户优先使用风矢量单元位置编号(跨轨方向从西到东编号1-70)3-10、33-34的数据。或使用产品内质量标识码对产品进行质量控制。

7.3 应用限制条件

- 1)海风产品只在开阔洋面生成,陆地和近岸20km以内的数据使用海陆掩码去除。
- 2)海风产品在有海冰、厚云、强降水等复杂海况和气象条件下精度受到影响, 像元均保留反演结果,这些像元可以通过产品内部质量标识码进行识别。

7.4 主要参考文献

[1] 窦芳丽, 卢乃锰, 谷松岩. 星载双频风场雷达热带气旋降雨区测风模

- 拟[J]. 应用气象学报, 2012, 23(4):467-477.
- [2] Vogelzang, J., A. Verhoef, J. Verspeek, J. de Kloe and A. Stoffelen, AWDP User Manual and Reference Guide, version 3.0, NWPSAF-KN-UD-005, 2016
- [3] Gelsthorpe R V, Schied E, Wilson J J W. ASCAT-Metop's Advanced Scatterometer[J]. ESA bulletin, 2000, 102:p.19-27.
- [4] Gohil B S, Sarkar A, Agarwal V K. A New Algorithm for Wind-Vector Retrieval From Scatterometers[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):387-391.
- [5] Chi, C.-Y, F. K. A comparative study of several wind estimation algorithms for spaceborne scatterometers[J]. Geoscience and Remote Sensing, IEEE Transactions on, 1988, 26(2):115-121.
- [6] Portabella M, Stoffelen A. A probabilistic approach for SeaWinds data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 130.
- [7] Stoffelen, A. and M. Portabella, On Bayesian Scatterometer Wind Inversion, IEEE Transactions on Geoscience and Remote Sensing, 2006, 44, 6, 1523-1533
- [8] Shaffer, S. J., Dunbar, et al. A median-filter-based ambiguity removal algorithm for NSCAT[J]. Geoscience & Remote Sensing IEEE Transactions on, 1991.
- [9] Stoffelen B A, Anderson D. Ambiguity removal and assimilation of scatterometer data[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 123(538):491-518.
- [10] Vogelzang J. Two dimensional variational ambiguity removal (2DVAR)[J].
- [11] Quality control and wind retrieval for SeaWinds. Scientific report WR2002-01, Koninklijk Nederlands Meteorologisch Instituut, The Netherlands. 2000

- [12] Verhoef A, Stoffelen A. Algorithm Theoretical Basis Document for the OSI SAF wind products version 1.1[J].
- [13] Portabella M. Rain Effects on ASCAT-Retrieved Winds: Toward an Improved Quality Control[J]. IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(7):2495-2506.
- [14] Belmonte, M., J. Verspeek, A. Verhoef and A. Stoffelen,
 Bayesian sea ice detection with the Advanced Scatterometer, IEEE
 Transactions on Geoscience and Remote Sensing, 2012, 50, 7,
 2649-2657, doi:10.1109/TGRS.2011.2182356

8 产品技术支持

8.1 产品技术责任人

表 8-1 产品技术责任人列表

序号	姓名 单位		联系电话	电子邮箱
1.	窦芳丽	国家卫星气象中心	010-58993729	doufl@cma.gov.cn
2.	韩爽爽	华云星地通	010-68400244	530095911@qq.com