风云三号D星微波类仪器介绍

微波成像仪(MWRI) 武胜利 微波温度计(MWTS) 安大伟 微波湿度计(MWHS) 郭杨 全球导航卫星掩星探测仪(GNOS) 杨光林

国家卫星气象中心

2019/3/1

主要内容

- •风云三号D星微波成像仪MWRI
 - 微波成像仪简介
 - 在轨性能评价
 - L1数据格式介绍及使用指南
 - 数据读取
 - 产品示例
- •风云三号D星微波温度计MWTS
- •风云三号D星微波湿度计MWHS
- •风云三号D星全球导航卫星掩星探测仪GNOS

Chinese Meteorological Administration

微波成像仪简介

Chinese Meteorological Administration

FY-3/MWRI

AMSR-E

Chinese Meteorological Administration

微波成像仪参数

Vacuum test system

Chinese Meteorological Administration

Process of Vacuum test

Chinese Meteorological Administration

Result (1) T-V Curve $(20^{\circ}C)$

Chinese Meteorological Administration

(2) Non-linearity coefficient (20°C)

Chinese Meteorological Administration

Result

(3) Non-linearity coefficient VS Receiver Temperature

Result

(4) Residual error after non-linearity correction $(20^{\circ}C)$

Chinese Meteorological Administration

Result (5) NeDT (20°C)

Chinese Meteorological Administration

Chinese Meteorological Administration

NeDT of FY-3A/B/C/D MWRI

Chinese Meteorological Administration

Xcal of FY3D/MWRI and GPM/GMI (hot end)

	Bias(K)	Std (K)	Corr.
10V	-1.58	1.01	0.951
10H	-1.27	1.40	0.961
18V	0.39	0.95	0.993
18H	1.15	1.14	0.996
23V	-1.34	0.82	0.998
36V	-2.85	0.73	0.992
36H	-2.93	0.91	0.998
89V	-1.49	0.82	0.997
89H	-1.42	0.96	0.999

圆锥扫描微波辐射计定标精度 (与GMI交叉比对)

Wesley Berg (CSU), Rachael Kroodsma, Faisal Alquaeid, Steve Bilanow, Ruiyao Chen, Joyce Chou, Saswati Datta, David Draper, Hamideh Ebrahimi, Spencer Farrar, Yimin Ji, Linwood Jones, Darren McKague, Erich Stocker, Tom Wilheit et al.

Different on-orbit passive microwave radiometer performance

Observation minus ECMWF Background Statistics for June 2014

Data: 1 month, after cloud screening, ocean +/- 60 latitude

Chinese Meteorological Administration

Problem1:

Ascending/Descending Biases:

e.g. channel 3 (19V) O - B

Chinese Meteorological Administration

Warm Calibration system of FY-3/MWRI

• Brightness temperature of earth-surface in the direction of the warm reflector back lobe; Error Source 1
Error Source 2 $T_{EA}(1 - \eta_A) - \eta_A \{T_{ET}(1 - \eta_T) + \eta_T(1 - \varepsilon)[T_{EC}(1 - \eta_H) + T_H * \eta_H] + \varepsilon * T_R\}$

Chinese Meteorological Administration

Difference of Min/Max BT

operational: using a climate brightness Temperature dateset (from AMSR-E Jan-Dec/2006, monthly average); **Improve:** Consider the local time of the warm reflector back lobe direction

Difference of BT result before and after correction

cold

 $1 - \eta_T$ is not the real factor of warm reflector back lobe, the true value should be smaller.

We can't use the ground measured η_T . to get the back lobe factor directly.

Chinese Meteorological Administration

- The parameters that affect scale factors(Gain)
 - Temperature of Receiver (Parameter 1);
 - Warm/cold reflectors emission(Parameter 2);
 - Back lobe of warm reflector(Parameter 3).
- Sudden change Only appear on back lobe of warm reflector.

Chinese Meteorological Administration

NeDT(total orbit data)

Chinese Meteorological Administration

Reflector Correction

SSMIS

(0.00 0.17 0.33 0.60 0.65 0.62 0.06 1.14 1.30 1.47 1.63 1.79 1.96 2.11 2.37 2.44 2.60 2.44)

MWRI

Chinese Meteorological Administration

Warm/cold reflector emission

$$T_{BE}^{1} = G(T_{BH}^{1} - T_{BC}^{1}) + T_{BC}^{1} + T_{nlin} \quad \text{"Real" BT}$$
$$T_{BE}^{2} = G(T_{BH}^{2} - T_{BC}^{2}) + T_{BC}^{2} + T_{nlin} \quad \text{MWRI BT}$$

$$T_{BE}^{1,D} - T_{BE}^{1,A} - (T_{BE}^{2,D} - T_{BE}^{2,A})$$
nonlinear
= $\varepsilon_H (G^D (T_{HM}^D - T_{HS}^D) - G^A (T_{HM}^A - T_{HS}^A))$
+ $\varepsilon_C ((1 - G^D) (T_{CM}^D - 2.7) - (1 - G^A) (T_{CM}^A - 2.7))$

Ascending/Descending Bias =warm reflector emission+cold reflector emission

Chinese Meteorological Administration

Warm/cold reflector emission

$$(T_{BE}^{1,I} \to T_{BE}^{1,A}) - (T_{BE}^{2,D} + T_{BE}^{2,A})$$

= $\varepsilon_{H} (G^{D} (T_{HM}^{D} - T_{HS}^{D}) - G^{A} (T_{HM}^{A} + T_{HS}^{1}))$
+ $\varepsilon_{C} ((1 - G^{D}) (T_{CM}^{D} - 2.7) - (1 - G^{A}) (T_{CM}^{A} - 2.7))$

$$\mathbf{Y} = \varepsilon_H \mathbf{X}_1 + \varepsilon_C \mathbf{X}_2 + \mathbf{b}$$

Chinese Meteorological Administration

Coast Buffer and Scatter filter

Coast Buffer

Chinese Meteorological Administration

Cold Targent filter

Chinese Meteorological Administration

Cold Targent Irregular Points Ground Position (10V/10H/18V/18H)

EU:10.65GHz/US:18.7GHz

Satellite	Location	Frequency
TelStar18	138E	12.5
TelStar12	15W	11.5
TelStar11	37.5W	11.7
Hotbird	13E	11.6
TelStar14R	63W	12.2
AnikF1R	107.3W	12.2
AnikF2	111.1W	12.2
AnikF3	118.7W	11.7
DirecTV10	103W	19.1
DirecTV11	99W	18.5
SpaceWayF1	102.8W	18.3-19.8

Before and after filter

10H 20180501 ASCEND

Chinese Meteorological Adı

201801 FY3D A/D Bias VS Lat

Chinese Meteorological Administration

FY-3D/MWRI A/D Bias Using GMI 20180101-20181231

Chinese Meteorological Administration

ISMC
FY-3/MWRI launch schedule

- Past:
 - 2008:FY-3A(10-89GHz, Dul-p), Shut down;
 - 2010:FY-3B(10-89GHz, Dul-p), Operational;
 - 2013:FY-3C(10-89GHz, Dul-p), Operational;
 - 2017:FY-3D(10-89GHz, Dul-p), Operational;
- Future:
 - 2020:FY-3F(Reflector increased from 1m to 1.8m);
 - 2021:FY-3P(Precipitation Satellite, Lower orbit, Reflector increased from 1m to 1.6m);
 - 2022:FY-3G(Reflector increased from 1m to 1.8m);
 - The emissivity of reflector will be much improved for these 3 sensors.

Passive Microwave Imagers: Current and Planned

Current and future polar orbiting passive microwave coverage

Walt Meier, NSIDC/NASA

Chinese Meteorological Administration

L1数据文件

表 3-1 FY-3D 微波成像仪数据产品文件汇总

序号	产品名称	产品格式	周期	产品描述	关键词
1	FY3D_MWRIA_GBAL_L1_YYYYM MDD_HHmm_010KM_MS.HDF	HDF	54 分钟	升轨亮温轨 道数据	А
2	FY3D_MWRID_GBAL_L1_YYYYM MDD_HHmm_010KM_MS.HDF	HDF	54 分钟	降轨亮温轨 道数据	D

每日全球28轨 每条轨道38-40MB

Chinese Meteorological Administration

	SDS 1	Latitude	纬度	Latitude
	SDS 2	Longitude	Longitude	经度
	SDS 3	Sensor_Zenith	Earth Observation	卫星对地观测天顶角
			Sensor Zenith Angle	
Geolocation	SDS 4	Sensor_Azimuth	Earth Observation	卫星对地观测方位角
Fields			Sensor Azimuth Angle	
	SDS 5	Solar_Zenith	Earth Observation	太阳天顶角
			Solar Zenith Angle	
	SDS 6	Solar_Azimuth	Earth Observation	太阳方位角
			Solar Azimuth Angle	
	SDS 7	EARTH_OBSERVE_	10-89GHz Earth	10-89GHz V 和 H 极化
		BT_10_to_89GHz	Observation Brightness	对地观测亮温数据
			Temperature	
	SDS 8	LandCover	Land Cover	89GHz 频点分辨率水
				平的 IGBP 陆表覆盖分
Calibration				类
Fields	SDS 9	LandSeaMask	Land Sea Mask	海陆掩码
	SDS 10	DEM	Digital Elevation	地表高程
			Model	
	SDS 11	Scan_Dayent	Scan Line Time (day	扫描线日计数
			count)	
	SDS 12	Scan_Mscnt	Scan Line Time	扫描线毫秒计数
			(milliseconds count)	
	SDS 13	QA_Scan_Flag	QA Flag for Scanline	扫描线预处理质量标
OA Fields				识
QA Fields	SDS 14	QA_Ch_Flag	QA Flag for Channel	通道数据完整性质量
			Data Integrity	标识

频率测试结果

表 4-1 FY-3D 微波成像仪带宽测试结果

通道	带宽设计值	D星带宽
10.65V	180±10%	178.8
10.65H	180±10%	180.8
18. 7V	$200 \pm 10\%$	197.9
18. 7H	$200 \pm 10\%$	198.8
23. 8V	400±10%	388.8
23. 8H	400±10%	402
36. 5V	900±10%	873
36.5H	$900 \pm 10\%$	873
89V	$2300 \pm 10\%$	2×2330
89H	$2300 \pm 10\%$	2×2344

表 4-1 FY-3D 微波成像仪频率测试结果

频率	本振频率设计值	D星本振频率
10.65	10.45 \pm 0.01	10. 4482438
18.7	19.3 ± 0.01	19. 297447
23.8	23.1 ± 0.01	23. 0979401
36. 5	35.05 ± 0.01	35. 0512857
89	89±0.02	88.999806

核心SDS

L1 数据中,亮温数据集为 SDS7 EARTH_OBSERVE_BT_10_to_89GHz,其中存储了 每条轨道定标后的各个通道亮温数据,为了节约存储空间,进行了格式转换。

通过下式可计算得到亮温结果,单位为K。

Tb=DN×0.01+327.68

其中:

Tb 为亮度温度, DN 为 SDS7 中所存数值。

亮温数据集大小为[nscans,npoints,10],是一个三维数组,其中,nscans 为该条轨道扫描线数,npoints 为每条扫描线的扫描点数,10 对应 10 个通道,顺序为10V\10H\18V\18H\23V\23H\36V\36H\89V\89H。

• data = hdf5read(filename, '/Calibration/EARTH_OBSERVE_BT_10_to_89GHz')

核心SDS

SDS1 和 SDS2 分别为纬度和经度数据集,大小均为[nscans,npoints],其中, nscans 为该条轨道扫描线数,npoints 为每条扫描线的扫描点数。

- data = hdf5read(filename, '/Geolocation/Longitude')
- data = hdf5read(filename, '/Geolocation/Latitude')

典型产品

Chinese Meteorological Administration

产品示例

- 左图为微波成像仪2017年11 月26日10-89Ghz, V/H极化 共计10通道的降轨全球亮温 拼图,表征当地时间凌晨1 点30分左右地球表面10-89GHz, V/H极化的辐射亮温 分布情况。
- 由于随着频率增加,地表辐射受大气影响逐渐增大,因此全球亮温拼图中由上到下的海陆差异逐渐缩小。
- 在10-89GHz频率范围内,陆 表发射率高于海表,因此全 球中低纬度的陆地表现为红 色的高亮温特征,而在海洋 区域,由于强降雨、海浪的 影响,也会出现较大范围明 显的高亮温区域。

雪深/雪水当量产品

Chinese Meteorological Administration

陆表温度产品

240 260 280 300 320 Land Surface Temperature (K)

Chinese Meteorological Administration

NSMC Ivational Satemite Intereorological Center

极区海冰 覆盖度产品

Chinese Meteorological Administration

海表温度产品

rational patemite intereorological Center

大气可降水日产品

风云三号D星微波温度计

Chinese Meteorological Administration

一. 温度计简介

风云三号卫星微波温度计(MWTS)

- ✓ 01批A/B星配置与MSU相同:大气温度廓线; A星在轨运行四年半,B星运行三年半;C星运 行一年半。
- ✓ 02批C/D星配置相当于ATMS3-15。

		探测频率(GHz)		
	序号	01批A/B星	02批C/D星	
	1	50.3	50.3	
甬	2	1	51.76	
出	3	/	52.8	
旦 几	4	53.74	53.596	
又	5	1	54.40	
置	6	54.96	54.94	
	7	/	55.50	
	8	57.95	57.290344(fo)	
	9	/	fo±0.217	
	10	1	$fo \pm 0.3222 \pm 0.048$	
	11	1	$fo\!\pm\!0.3222\!\pm\!0.022$	
	12	/	$fo\!\pm\!0.3222\!\pm\!0.010$	
	13	1	$fo \pm 0.3222 \pm 0.0045$	

全球亮温分布 3

二. 仪器在轨性能评价

通道	中心频率	FY-3D星M\ (GHz)	NTS性律 (M	选标与测 (Hz)	小试结果 主波束	效率	波束宽度 (度	(3dB) E)
	设计[注1]	测量	设计[注 2]	测量	设计	测量	设计[注 3]	测量
1	50.3	50.258	180	184.21	>90%	92.31%	2.2	2.375
2	51.76	51.733	400	383.72	>90%	93.81%	2.2	2.325
3	52.8	52.780	400	363.38	>90%	92.98%	2.2	2.275
4	53.596	53.575	400	394.62	>90%	92.98%	2.2	2.225
5	54.40	54.405	400	428.59	>90%	91.87%	2.2	2.200
6	54.94	54.937	400	422.36	>90%	92.44%	2.2	2.175
7	55.50	55.504	330	349.22	>90%	91.93%	2.2	2.250
8	57.290344(fo)	57.290 (fo)	330	297.68	>90%	91.97%	2.2	2.200
9	fo±0.217	fo±0.217	78	76.08	>90%	91.97%	2.2	2.200
10	fo $\pm 0.3222 \pm 0.$ 048	$f_0 \pm 0.3222 \pm 0.048$	36	33.73	>90%	91.97%	2.2	2.200
11	fo $\pm 0.3222 \pm 0.$ 022	fo $\pm 0.3222 \pm 0.$ 022	16	15.61	>90%	91.97%	2.2	2.200
12	fo $\pm 0.3222 \pm 0.010$	fo $\pm 0.3222 \pm 0.$ 010	8	8.21	>90%	91.97%	2.2	2.200
13	fo $\pm 0.3222 \pm 0.$ 0045	fo $\pm 0.3222 \pm 0.$ 0045	3	2.82	>90%	91.97%	2.2	2.200

 在每个工作温度下,在每个变温源的温度点,从900条扫描线中选择 连续的200条扫描线的数据进行处理,每20条扫描线计算得到冷定标 源的平均温度T₁及其输出电压平均值V₁;计算得到热定标源的温度T₂ 及其输出电压平均值V₂;计算冷源和热源输出电压的方差V_{1ms};和 V_{2ms},按照式1计算共得到20个ΔT值,取其中的第2大值作为本次测 量的测温灵敏度。

$$\Delta T = \frac{T_2 - T_1}{V_2 - V_1} \times \sqrt{(V_{1rms}^2 + V_{2rms}^2)/2}$$
(1)

• 图中给出了在轨工作温度下的灵敏度情况的曲线。

2.2 定标精度

- 微波辐射计定标就是确定微波辐射计对于已知辐射特性目标的响应特性。
- 定标方程就是描述这个响应特性的函数。通常辐射计的响应特性是线性的,或者是准线性的,因此可以用一次方程或者二次方程描述。

• 国际模式比对偏差结果

- FY3D-MWTS;
- S-NPP ATMS;
- NOAA-20 ATMS

五温度计典型产品及应用情况

Operational ECMWF system September to December 2008. Averaged over all model layers and entire global atmosphere. % contribution of different observations to reduction in forecast error.

风云三号D星微波湿度计

Chinese Meteorological Administration

一、FY-3D MWHS II 简介

仪	参数	指标
器	对地扫描张角	$\pm 53.35^{\circ}$
主	扫描成像点数	98个点/每条扫描线
安 参	在轨定标	周期性两点定标
多数	扫描周期	2667ms
省	两副天线间配准精度	0.1°(方位、俯仰)
标	天线指向精度	$\pm 0.10^{\circ}$

序	杼号	中心频率 (GHz)	极化	带宽 (MHz)	灵敏度 (K)	定标精度 (K)	3dB波束 宽度
	1	89.0	V	1500	1.0	1.3	2.0°
	2	118.75±0.08	Н	20	3.6	2.0	2.0°
	3	118.75±0.2	Н	100	2.0	2.0	2.0°
	4	118.75±0.3	Н	165	1.6	2.0	2.0°
	5	118.75±0.8	Н	200	1.6	2.0	2.0°
	6	118.75±1.1	Н	200	1.6	2.0	2.0°
	7	118.75±2.5	Н	200	1.6	2.0	2.0°
	8	118.75±3.0	Н	1000	1.0	2.0	2.0°
	9	118.75±5.0	Н	2000	1.0	2.0	2.0°
1	10	150.0	V	1500	1.0	1.3	1.1°
1	11	183.31±1	Н	500	1.0	1.3	1.1°
1	12	183.31±1.8	Н	700	1.0	1.3	1.1°
1	13	183.31±3	Н	1000	1.0	1.3	1.1°
1	14	183.31±4.5	H	2000	1.0	1.3	1.1°
1	15	183.31±7		2000	1.0	1.3	1.1°

仪器通道参数设置

一、FY-3D MWHS II 简介

仪器由中科院国家空间科学中心研制

- 刈幅宽度: 2645 km;
- 像元数: 每条扫描线有98个像元;
- 刈幅间隔: 20km;
- 空间分辨率:通道1-9的星下点分 辨率约为25km,通道10-11的星下 点分辨率约为15km。

MWHS II型实物图片

Chinese Meteorological Administration

二、FY-3D MWHS II 在轨性能评价

Chinese Meteorological Administration

二、FY-3D MWHS II 在轨性能评价

二、FY-3D MWHS || 在轨性能评价

统计2018年3月21-25日全球南北纬45°间洋面晴空区O-B,结果表明:C星和D星误差相当; 118GHz八个温度探测通道均满足指标要求;窗区和吸收线远翼通道受地表模型精度影响,湿度通 重受背景场精度影响,O-B方法评估仅供参考。 National Satellite Meteorological Center

FY3D MWHSII 在轨测试指标符合情况

序号	项目名称	技术指标要求	测试结果	符合情况
1	对地扫描张角	±(53.35° ±0.1°)	106.765 \pm 0.015°	符合
2	对地观测点	98点	98点	符合
3	扫描周期	2667ms	2667ms	符合

通 道	中心频率 (GHz)	动态范 围指标	动态范围	灵敏度 指标	灵敏度	定标精 度指标	定标 误差	符合情况
1	89.0	0~10	1.64~4.74	1.0	0.20	1.3	0.945	符合
2	118.75 ± 0.08	0~10	1.61~4.89	3.6	1.22	2.0	1.516	符合
3	118.75±0.2	0~10	1.62~5.75	2.0	0.48	2.0	0.985	符合
4	118.75±0.3	0~10	1.99~5.6	1.6	0.38	2.0	1.037	符合
5	118.75±0.8	0~10	1.61~5.12	1.6	0.37	2.0	0.936	符合
6	118.75±1.1	0~10	1.6 ~5.19	1.6	0.36	2.0	0.933	符合
7	118.75±2.5	0~10	1.41~4.88	1.6	0.35	2.0	0.914	符合
8	118.75±3.0	0~10	1.25~4.66	1.0	0.20	2.0	0.883	符合
9	118.75±5.0	0~10	3.65~8.87	1.0	0.17	2.0	0.861	符合
10	150.0	0~10	1.77~5.74	1.0	0.22	1.3	0.888	符合
11	183.31 ± 1	0~10	1.58~5.43	1.0	0.39	1.3	0.918	符合
12	183.31 ± 1.8	0~10	1.72~5.7	1.0	0.29	1.3	0.880	符合
13	183.31 ± 3	0~10	1.11~4.93	1.0	0.28	1.3	0.877	符合
14	$18\overline{3.31}\pm4.5$	0~10	3.78~8.92	1.0	0.27	1.3	0.986	符合
15	183.31 ± 7	0~10	1.2 ~7.72	1.0	0.25	1.3	0.934	符合

三、FY-3D MWHS II L1数据格式及使用指南

FY-3D微波湿度计II型L1数据科学数据集

		科学数据组	集	
分组名称		科学数据集名	科学数据集英文描述	科学数据集中文描述
	SDS1	Latitude	Latitude in WGS84	纬度
	SDS2	Longitude	Longitude in WGS84	经度
	SDS3	SolarAzimuth	Solar Azimuth	太阳方位角
	SDS4	SolarZenith	Solar Zenith	太阳天顶角
	SDS5	SensorAzimuth	Sensor Azimuth	仪器方位角
	SDS6	SensorZenith	Sensor Zenith	仪器天顶角
Geolocation	SDS7	Scnlin_daycnt	Scan Line Time (day	扫描线对地观测起始
Fields			count)	时刻天计数
	SDS8	Scnlin_mscnt	Scan Line Time	扫描线对地观测起始
			(milliseconds count)	时刻毫秒计数
	SDS9	Pixel_View_Angle	Pixel View Angle	对地观测起始终止角
	SDS10	DEM	Digital Elevation Model	数字地表高程
	SDS11	LandSeaMask	Land Sea Mask	海陆掩码
	SDS12	LandCover	Land Cover	陆地覆盖类型
Data Cialda	SDS13	Earth_Obs_BT	Earth Observation	对地观测亮温
Data Fields			Brightness Temperature	
	SDS14	QA_Scan_Flag	QA Flag for Scanline	扫描线预处理质量标
			_	识
	SDS15	QA_Ch_Flag	QA Flag for Channel	通道数据完整性质量
			Data Integrity	标识
QA FIEIds	SDS16	QA_Score	Earth Observation	观测亮温质量评分
			Brightness	
			Temperature Quality	
			Score	

L1数据中表征维数的参数说明

	参数名称	说明
	npixel	98个扫描成像点数
- 24	nscans	每轨扫描线条数
	nchannel	15个通道
NSMC	National S	atellite Meteorological (

三、FY-3D MWHS II L1数据格式及使用指南

npixel

存储格式: [nchannel×nscans×npixel]

Chinese Meteorological Administration

四、FY-3D MWHS II L1数据读取程序说明

L1级数据的"QA"中存储了描述MWHS II定标亮温质量的三个科学数据集

四、FY-3D MWHS II L1数据读取程序说明

C语言高级函数版

调用函数: int status = ReadSDSHDFInt("Test.HDF", "/Group/DatasetName", Data);

只读: H5F_ACC_RDONLY

读写: H5F_ACC_RDWR

读取不同数据类型:

H5LTread dataset string

H5LTread_dataset_char H5LTread_dataset_short

H5LTread dataset int

H5LTread_dataset_long H5LTread_dataset_float

H5LTread dataset double

```
int ReadSDSHDFInt(const char *strFileName, const char *strSDSName, int* pData)
{
    herr_t status;
    hid_t hFileID1;
```

```
hFileID1=H5Fopen(strFileName, H5F_ACC_RDONLY, H5P_DEFAULT); //打开文件 if(hFileID1<0)
```

```
{
printf("打开文件%s错误! \n",strFileName);
return -1;
```

```
status = H5LTread_dataset_int(hFileID1, strSDSName, pData); //读取数据
if (status<0)
```

```
{
  H5Fclose(hFileID1);
  return -3;
}
```

```
H5Fclose(hFileID1); //关闭文件
```

```
return 0;
```


四、FY-3D MWHS II L1数据读取程序说明

C语言底层函数版

```
H5T NATIVE UCHAR
int ReadL1(char* filename, char* datasetName, float *pData)
                                                                       H5T NATIVE CHAR
                                                                       H5T NATIVE USHORT
   hid_t file_id,dataset; //hid_t是自带的定义类型
                                                                       H5T NATIVE SHORT
   herr t status;
                                                                       H5T NATIVE INT
                                                                       H5T NATIVE UINT
   file id = H5Fopen(filename, H5F ACC RDONLY, H5P DEFAULT);
                                                                       H5T NATIVE FLOAT
   if(file id < 0)
                                                                       H5T NATIVE DOUBLE
      printf("open %s error!\n",filename);
      return -1;
  dataset = H5Dopen(file id, datasetName,H5P DEFAULT); //返回要读的数据集的id
  if(dataset < 0)
     return -1;
   status = H5Dread(dataset, H5T NATIVE FLOAT, H5S ALL, H5S ALL, H5P DEFAULT, pData);
   if( status < 0 )
      return -1;
```

H5Fclose(file_id);

return 0;

读取不同的数据类型:
四、FY-3D MWHS II L1数据读取程序说明

Import h5py

Fp = h5py.File(FileName, 'r')

Data = Fp[SDSName][:]

Fp.close()

Chinese Meteorological Administration

风云三号D星GNOS

Chinese Meteorological Administration

全球导航卫星掩星探测仪 GNOS

GNOS是风云三号02批的新增有效载荷,它利用低轨FY-3卫星上的GNSS接收机,接收被地球大气层和电离层遮掩的GNSS信号,通过反 演得到全球大气的折射率、温度、压强、湿度和电离层电子密度等 参数。GNOS不但成功接收到GPS的掩星信号,而且成功接收到我国 北斗卫星导航系统的掩星信号。GNOS探测具有高精度、高稳定度、 高垂直分辨率、全天候、低成本等优点,可为数值天气预报业务、 大气物理研究和气候研究提供全天候的数据,为空间天气研究和业 务提供电离层监测数据。

GNOS仪器组成框图

Chinese Meteorological Administration

	大劫州船亚份
· ~	任机性肥け仍

项目	技术指标要求	测试结果	指标符合性					
接收机通道数	GPS 定位8,掩星8; BDS 定位6,掩星4;	9, 8, 6, 6	\checkmark					
采样率	定位数据: 1Hz; 电离层数据: 1Hz; 大气闭环数据: 50Hz; 大气开环数据: 100Hz	增加BDS大气开环	\checkmark					
伪距测量精度	\leq 30cm (RMS)	L1C: 10.5cm L2C: 15.5cm L2P: 10.6cm	\checkmark					
载波相位测量精 度	\leq 2mm (RMS)	L1C-L2C: 0.41mm L1C-L2P: 0.20mm	\checkmark					
实时定位精度	\leq 10m (RMS)	7.28 m	\checkmark					
实时测速精度	≪0.1m/s (RMS)	0.08 m/s	\checkmark					
位置测量精度 (后处理)	<20cm	2.24 cm	\checkmark					
速度测量精度 (后处理)	<0. 2mm/s	18.73 µm∕s	√ 79					
Chinese Meteorological Administration National Satellite Meteorological Center								

精密轨道

- ➢ GNOS L1数据(精密轨道)提供了一个时段的FY-3D卫星的 精密轨道。产品内容包括时间、FY-3D卫星质心位置、质 心速度、GNOS钟差。
- ▶ 用于计算大气附加相位、电离层附加相位。
- ▶ 命名:

FY3D_GNOSX_GBAL_L1_YYYYMMDD_HHmm_PODXX_MS.SP3

精密轨道

- ▶ 格式: SP3文本
- ▶ 文件头节有22行,含有文件版本号、轨道数据首历元的时间、数据历元间隔、文件中具有数据的卫星号、数据的精度指数及注释等。
- ▶ 数据记录节是由按一定历元间隔所给出的卫星位置(卫星 速度)和卫星钟差等信息所组成。

F	3C_GN	OSX_GB	AL_L1	2014	0415_0	146_	PODX	X_M	S.SP	3 ×	c 📃						
Õ.,	i i Li	1,0,	1.1.1	1,1,12	0	Lü	, ,3,0,	11	117	4	0, ,	<u>ст 1</u>		,5,0,		111	, ,6,0
++		0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
++		0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
++		0	0	0	0 0	0	0	0	0	0	0	0	0	0	0	0	0
%c	L c	c GPS	ccc	ccc	c cco	cc c	cccc	cc	сс	ccc	cc	ccc	cc	ccc	cc	ccc	cc
%c	cc c	c ccc	ccc	ccc	c cco	cc d	cccc	cc	cc	ccc	cc	ccc	cc	ccc	cc	ccc	cc
%f	1.2	500000) 1.	025	00000	00	0.00	000	000	0000	0	0.0	000	0000	000	0000	00
%f	0.0	000000) 0.	000	00000	00	0.00	000	000	0000	0	0.0	000	0000	000	0000	00
%i	0	0	()	0		0		0		()		0			0
%i	0	. 0	()	0		0	~	0		()		0			0
/*	Prec	ise or	bit	for	FY-:	3C ı	isin	g G	NOS	on	14	1105					
/*	LINE	2															
/*	LINE	3															
/*	LINE 2014	4	1	16	21 00	000	0000										
DI 1	2014	964 1	6229	40	21. 9	9990	7169	1	_71	20	200	1000	0	0000	0 0	0000	00
VI	21 /	5626	100010	DO -	5056	2 7	1162	± 5	-1	70	067	7742	9	0000	9.	0000	99
VL.	2014	1 19	1024	16	22 00	0000	1000	0	-	19.	001	140	9:	9999	9. :	9999	99
PI	2014	868 7	72500	40	67	7 11	14619	R	-71	20	305	5020	Q	0000	0 0	0000	00
VI	31 /	5608 6	875	15 -	5057	7 5/	1300	5	-1	03	550	125	00	0000	0.0	0000	00
*	2014	4 15	5 1	46	23 90	000	0000	0	-	.00.	000	120	5.	5555	J	5555	55
PI	31	873	850	56	67	1.15	5617	9	-71	29	401	599	90	9999	9.0	9999	99
VL	31 4	5590.8	34259	- 99	5959	1. 27	79318	8	-	-28.	038	3456	90	9999	9 0	9999	99
*	2014	4 15	5 1	46	24.90	9990	0000	-		20.							
PL	31	877.8	3432	57	66	5. 19	9636	5	-71	29.	400)627	90	9999	9.0	9999	99

NSMC

大气附加相位

- ➢ GNOS L1数据(大气附加相位)提供了单次掩星事件的大 气附加相位及辅助数据。产品内容包括时间、掩星GNSS 卫星号、掩星GNSS位置和速度、FY-3D卫星位置和速度、 信噪比、掩星标识符。
- ▶ 用于计算大气弯曲角、折射率、密度、温度、湿度廓线。
- ▶ 命名:

FY3D_GNOSX_GBAL_L1_YYYYMMDD_HHmm_AE*##_MS.NC

大气附加相位

• FY-3D GNOS L1数据(大气附加相位)廓线数据结构

▶ 格式: NC

描述	属性名称	数据类型	单位	有效范围	填充值
L1通道CA码信噪比	caL1Snr	float	volts/volt	0, 65535	-999
L1通道P码信噪比	pL1Snr	float	volts/volt	0, 65535	-999
L2通道CA码信噪比	caL2Snr	float	volts/volt	0, 65535	-999
L2通道P码信噪比	pL2Snr	float	volts/volt	0, 65535	-999
开环相位模型	xmdl	double	m	-2000000, 2000000	-9999999
开环相位大气模型	xmdldd	double	m	-5000, 5000	-9999
开环伪距模型	xrng	double	m	-5000, 5000	-9999
开环相位残差	Dphs	double	m	-5000, 5000	-9999
掩星采样时间	time	float	S	0, 240	-999
经过电离层修正之后的 附加相位	exLC	double	m	-10000, 10000	-99999
L1通道附加相位	exL1	double	m	-10000, 10000	-99999
L2通道附加相位	exL2	double	m	-10000, 10000	-99999
L2P通道附加相位	exL2P	double	m	-10000, 10000	-99999
L2C通道附加相位	exL2C	double	m	-10000, 10000	-99999
C1C2组合附加相位	exLC_C1C2	double	m	-10000, 10000	-99999
C1P2组合附加相位	exLC_C1P2	double	m	-10000, 10000	-99999
GNSS X坐标	xGnss	double	km	-26564, 26564	-99999
GNSS Y坐标	yGnss	double	km	-26564, 26564	-99999
GNSS Z坐标	zGnss	double	km	-26564, 26564	-99999
GNSS X速度	xdGnss	double	km/s	-5, 5	-999
GNSS Y速度	ydGnss	double	km/s	-5, 5	-999
GNSS Z速度	zdGnss	double	km/s	-5, 5	-999
LEO X坐标	xLeo	double	km	-7378, 7378	-9999
LEO Y坐标	yLeo	double	km	-7378, 7378	-9999
LEO Z坐标	zLeo	double	km	-7378, 7378	-9999
LEO X速度	xdLeo	double	km/s	-8, 8	-999
LEO Y速度	ydLeo	double	km/s	-8, 8	-999
LEO Z速度	zdLeo	double	km/s	-8, 8	-999

电离层附加相位

- ➢ GNOS L1数据(电离层附加相位)提供了单次掩星事件的 电离层附加相位及辅助数据。产品内容包括时间、掩星 GNSS卫星号、卫星位置和速度、FY-3D卫星位置和速度、 信噪比、掩星标识符。
- ▶ 用于计算电离层电子密度廓线。
- ▶ 命名:

FY3D_GNOSX_GBAL_L1_YYYYMMDD_HHmm_IE*##_MS.NC

电离层附加相位

▶ 格式: NC

• FY-3D GNOS L1数据(电离层附加相位)廓线数据结构

描述	属性名 称	数据类 型	单位	有效范围	填充值
L1通道CA码信噪比	caL1Snr	float	volts/volt	0, 65535	-999
L2通道P码信噪比	pL2Snr	float	volts/volt	0, 65535	-999
L2通道CA码信噪比	caL2Snr	float	volts/volt	0, 65535	-999
掩星采样时间	time	float	S	0, 1200	-999
L1通道附加相位	exL1	double	m	-5000, 5000	-9999
L2通道附加相位	exL2	double	m	-5000, 5000	-9999
GNSS X坐标	xGnss	double	km	-26564, 26564	-99999
GNSS Y坐标	yGnss	double	km	-26564, 26564	-99999
GNSS Z坐标	zGnss	double	km	-26564, 26564	-99999
GNSS X速度	xdGnss	double	km/s	-5, 5	-999
GNSS Y速度	ydGnss	double	km/s	-5, 5	-999
GNSS Z速度	zdGnss	double	km/s	-5, 5	-999
LEO X坐标	xLeo	double	km	-7378, 7378	-9999
LEO Y坐标	yLeo	double	km	-7378, 7378	-9999
LEO Z坐标	zLeo	double	km	-7378, 7378	-9999
LEO X速度	xdLeo	double	km/s	-8, 8	-999
LEO Y速度	ydLeo	double	km/s	-8, 8	-999
LEO Z速度	zdLeo	double	km/s	-8, 8	-999

Chinese Meteorological Administ LEO Z速用

典型产品及应用——全球电离层NmF2分布

典型产品及应用——北极电离层NmE分布

Thank you for your attention

Chinese Meteorological Administration

